www.mymathscloud.com

Please check the examination deta	ils below	before ente	ering your can	didate inform	ation
Candidate surname			Other name	25	
Pearson Edexcel International Advanced Level	Centro	e Number		Candidate	Number
Friday 16 Oct	ob	er 2	020		$\overline{}$
Afternoon (Time: 1 hour 30 minut	tes)	Paper R	eference V	VME01/	01
Mathematics					
International Advanced Mechanics M1	d Suk	osidiar	y/Advaı	nced Lev	vel
You must have: Mathematical Formulae and Stat	istical ⁻	Tables (Blu	ue), calcula	ator	Total Marks

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take g = 9.8 m s⁻², and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

- 1. Two particles, P and Q, with masses m and 2m respectively, are moving in the same direction along the same straight line when they collide directly. Immediately before they collide, P is moving with speed 4u and Q is moving with speed u. Immediately after they collide, both particles are moving in the same direction and the speed of Q is four times the speed of P.
 - (a) Find the speed of Q immediately after the collision.

(3)

(b) Find the magnitude of the impulse exerted by Q on P in the collision.

(3)

(c) State clearly the direction of this impulse.

(1)

a) Draw a diagram labelling the masses and speeds.

Before

After

Using conservation of linear momentum:

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

- m(4u) + 2m(u) = m(v) + 2m(4v)
- " 4mu + 2mu = mv + 8mv
- . 6mu = 9mv

$$\frac{1}{2} = \frac{6mu}{9m} = \frac{2}{3}u + \frac{8}{3}u = \frac{8}{3}u$$

b) Formula for impulse:

$$\therefore \mathbf{I} = \mathbf{m} \mathbf{y} - \mathbf{m}(\mathbf{4}\mathbf{u})$$

$$= m(\frac{2}{3}u) - m(4u) = \frac{2}{3}mu - 4mu = -\frac{10}{3}mu \qquad \therefore \quad |I| = \frac{10}{3}mu$$

c) Opposite to the direction of motion.

Question 1 continued	Leave
Question I continued	
+ cosxsiny	
sin(x + 1/1)/2	
$\frac{7}{3}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{7}{3}$	
IVA METALS GAROL	
	01
	Q1
(Total 7 marks)	

2. A small ball is thrown vertically upwards with speed 14.7 ms⁻¹ from a point that is 19.6 m above horizontal ground. The ball is modelled as a particle moving freely under gravity.

Find

(a) the total time from when the ball is thrown to when it first hits the ground,

(4)

(b) the speed of the ball immediately before it first hits the ground,

(3)

(c) the total distance travelled by the ball from when it is thrown to when it first hits the ground.

(4)

(d) Sketch a velocity-time graph for the motion of the ball from when it is thrown to when it first hits the ground.

State the coordinates of the start point and the coordinates of the end point of your graph.

(3)

a) Set up a SUVAT rertically only as the ball won't more horizontally taking upwards as positive from the instant it's released till it hits the ground. SUVAT may be used as the acceleration is constant.

$$S: -19.6$$
 Equation without $Y: S = ut + \frac{1}{2}at^2$

u: 14.7

$$\gamma$$
: $\frac{1}{2}(-98)t^2$

$$\alpha: -9.8$$
 $\therefore -4.9t^2 + 14.7t + 19.6 = 0$

b) We can set up another SUYAT to find the speed of the ball before it hits the ground (v).

$$S: -19.6$$
 Equation without $t: \gamma^2 = u^2 + 2as$

u: 14.7

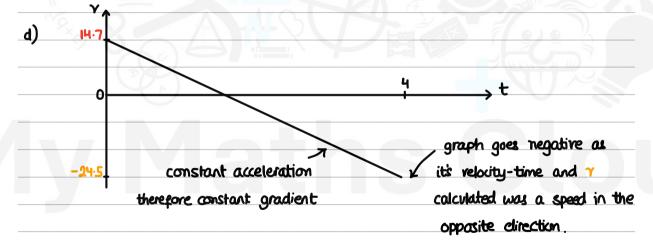
$$\gamma : \gamma$$
 $\dot{\gamma}^2 = 14.7^2 + 2(-9.8)(-19.6)$

$$\alpha: -9.8$$
 : $Y^2 = 600.25$

t:
$$\gamma = \sqrt{600.25} = 24.5 \text{ ms}^{-1}$$

Question 2 continued

- c) To calculate the total distance travelled we can seperate the journey into three parts.
- O Starts at release, ends when changes direction and goes down.
- ② Starts at change of direction, ends when the ball is level with starting position.
- 3 Starts when level at the start, ends when the ball hits the floor.
- Part 3 is already known as its just the height at the start and parts 0 and 2 are equal so we can just set up a SUVAT for part 0.
 - s: h Where h is the height above the starting position


u: 14.7

$$\gamma: 0$$
 Equation without $t: \gamma^2 = u^2 + 2as$

a: -9.8

t:
$$0^2 = 14.7^2 + 2(-9.8)(h)$$

" Total distance = 0 + 2+3 = 11.025 + 11.025 + 19.6 = 41.65 ≈ 41.7m (3sf)

		CV + C	osxsiny		
		.403,			
	sin(x+	Y) 11		3	
	3				
× v	// ?				
± 20			+		
×		$x = -b + \sqrt{b^2 - 4ac}$			π,,,
98					
+			$\mathcal{A}_{\mathcal{A}_{\mathbf{z}}}$		
11			1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Ye, Q		1-4-5	Hoog		
7 0	3)				
	300				
	 		18		

Question 2 continued	Lea bla
cosxsiny	
ain(x + y) is the same of the	
To The Tage of the	
	Q

3.

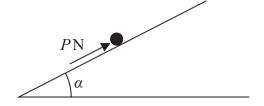
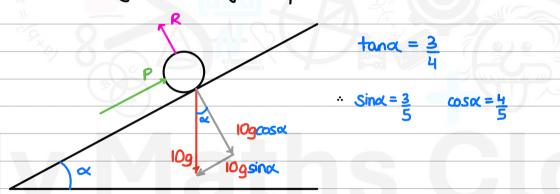


Figure 1

A particle of mass $10 \, \text{kg}$ is placed on a fixed rough inclined plane. The plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$. The particle is held in equilibrium by a force of magnitude P newtons, which acts up the plane, as shown in Figure 1. The line of action of the force lies in a vertical plane that contains a line of greatest slope of the plane. The coefficient of friction between the particle and the plane is $\frac{1}{2}$.

(a) Find the normal reaction between the particle and the plane.

(2)

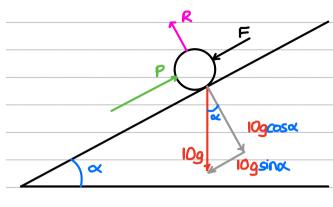

(b) Find the greatest possible value of *P*.

(4)

(c) Find the least possible value of P.

(2)

a) Draw a diagram labelling the forces.

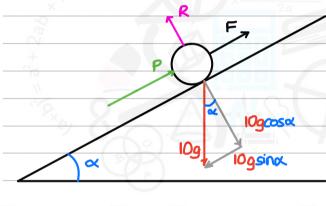

As there's no movement perpendicular to the plane, the sum of the perpendicular forces is zero.

$$^{\circ}$$
 $\leq F = 0$ $^{\circ}$ R-10gcosx = 0 $^{\circ}$ R = 10gcosx = 10 × 9.8 × $\frac{4}{5}$ = 78.4 N

b) The greatest value of P occurs when the particle is on the point of slipping up the plane meaning friction is acting down the slope to oppose motion as shown below.

blank

Question 3 continued


As there's no movement perpendicular to the plane, the sum of the perpendicular forces is zero.

Friction formula:

 $F = \mu R$

$$P_{\text{max}} = 10gsinx + \frac{1}{2}R = 10(9.8)(\frac{3}{5}) + \frac{1}{2}(78.4) = 98 N$$

c) To find the least value of P we simply do the opposite of finding the largest value meaning friction is now acting up the slope.

As there's no movement perpendicular to the plane, the sum of the perpendicular forces is zero.

Friction formula: F = µR

$$\frac{1}{2} P_{\text{min}} = 10g \sin \alpha - \frac{1}{2}R = 10(9.8)(\frac{3}{5}) - \frac{1}{2}(78.4) = 19.6 N_{\text{min}}$$

		رCOS) د	(Sin.		
		10051	E		
	sin(x + y)	5'	130		
	Z				
7. 70			N		
×) ×=	2a			£
29%	70				
70			F 30		
° 2, 0		1.0	(+, -)		
90					
	323				
	Ma				
				94	

Question 3 continued	Leave blank
cosxsiny	
sin(x + y) is the	
$\begin{array}{c c} & & & \\ \times & & & \\ \times & & & \\ \end{array}$	
IV Maths Gto	
	Q3
(Total 8 marks)	

blank

4.

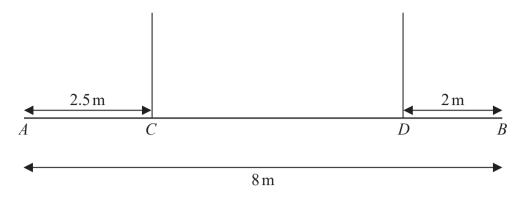


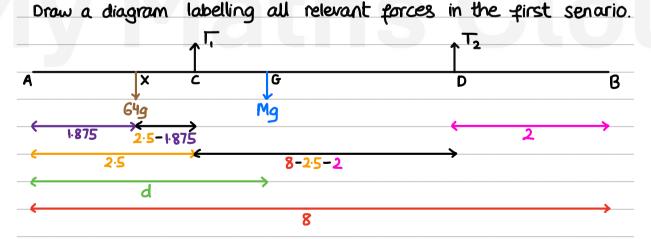
Figure 2

A non-uniform beam AB has length $8 \,\mathrm{m}$ and mass $M \,\mathrm{kg}$.

The centre of mass of the beam is d metres from A.

The beam is supported in equilibrium in a horizontal position by two vertical light ropes. One rope is attached to the beam at C, where $AC = 2.5 \,\mathrm{m}$ and the other rope is attached to the beam at D, where $DB = 2 \,\mathrm{m}$, as shown in Figure 2.

A gymnast, of mass 64 kg, stands on the beam at the point X, where AX = 1.875 m, and the beam remains in equilibrium in a horizontal position but is now on the point of tilting about C.


The gymnast then dismounts from the beam.

A second gymnast, of mass $48 \,\mathrm{kg}$, now stands on the beam at the point Y, where $YB = 0.5 \,\mathrm{m}$, and the beam remains in equilibrium in a horizontal position but is now on the point of tilting about D.

The beam is modelled as a non-uniform rod and the gymnasts are modelled as particles.

Find the value of M.

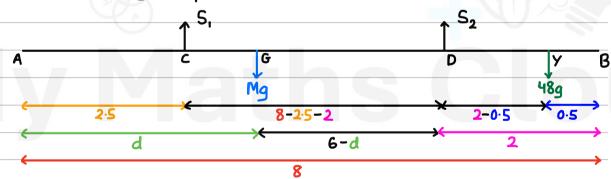
(8)

It's stated that the beam is horizontal and on the point of tilting about C meaning the tension in the rope at D is zero.

Question 4 continued

Since it's stated in the question that the beam is in equilibrium, the sum of the clockwise moments is equal to the sum of the anticlockwise moments, therefore:

¿moments clockwise = ¿moments anticlockwise


where moment = force × perpendicular distance

The clockwise forces are ones that go upwards from the left or downwards from the right of where moments are taken and anticlockwise forces are ones that go upwards from the right or downwards from the left of where moments are taken.

Taking moments around C:

$$\frac{.. \text{ Mg} = \frac{64g(0.625)}{d-2.5} = \frac{40g}{d-2.5} \frac{.. \text{ M} = \frac{40}{d-2.5}}$$

Draw another diagram for the second senario.

It's stated that the beam is horizontal and on the point of tilting about D meaning the tension in the rope at C is zero.

Taking moments around D:

Question 4 continued

$$\frac{.. \quad Mg = \frac{48g(1.5)}{6-d} = \frac{72g}{6-d} \quad .. \quad M = \frac{72}{6-d}$$

Equating both expressions of M together allow us to calculate d.

$$\frac{.}{6-d} = \frac{40}{d-2.5}$$

$$\frac{112d}{112} = 240 + 180 \qquad d = \frac{420}{112} = 3.75$$

We can now substitute this back to find M.

$$M = \frac{72}{6-3.75} = 32 \text{ kg}$$
 OR $M = \frac{40}{3.75-2.5} = 32 \text{ kg}$

Question 4 continued	Leave blank
cosxsiny	
an(x + y) is 1 3	
$\begin{array}{c} \pi \\ \times \\ \times \\ \end{array}$	
W Mathe (Clo	
	Q4
(Total 8 marks)	

5. A particle P is moving in a plane with constant acceleration. The velocity, \mathbf{vms}^{-1} , of P at time t seconds is given by

$$\mathbf{v} = (7 - 5t)\mathbf{i} + (12t - 20)\mathbf{j}$$

(a) Find the speed of P when t = 2

- **(3)**
- (b) Find, to the nearest degree, the size of the angle between the direction of motion of P and the vector \mathbf{j} , when t = 2

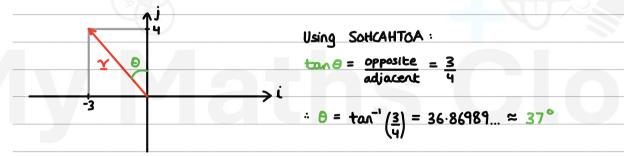
(3)

The constant acceleration of P is $\frac{a \text{ m s}^{-2}}{}$

(c) Find a in terms of i and j

(3)

(d) Find the value of t when P is moving in the direction of the vector $(-5\mathbf{i} + 8\mathbf{j})$


(4)

a) We can first find the relocity at t=2.

$$\gamma = (7-5(2))i + (12(2)-20)j$$

 $\gamma = -3i+4j$: speed = $|\gamma| = \sqrt{(-3)^2+(4)^2} = 5 \text{ ms}^{-1}$

We ignore the negative value after rooting as speed is always positive.

b) Draw the direction of motion of P at t=2 on an i-j graph.

c)
$$\alpha = \frac{dy}{dt} = \frac{d}{dt}(y) = \frac{d}{dt}\left[\frac{(7-5t)i + (12t-20)j}{(12t-20)j}\right] = \frac{d}{dt}\left[\frac{(7i-20j) + t(-5i+12j)}{(7i-20j)}\right]$$

$$\alpha = \frac{dy}{dt} = \frac{d}{dt}(y) = \frac{d}{dt}\left[\frac{(7i-20j) + t(-5i+12j)}{(7i-20j)}\right]$$

d) P moves in the direction of (-5i+8j) when the relocity is a positive scalar multiple (k) of (-5i+8j).

Question 5 continued

$$\sim \gamma = k(-5i+8j)$$

Equating both expressions for k:

$$\frac{7-5t}{-5} = \frac{12t-20}{8}$$

				_
	al t	cosxsiny		
	·6103,			
51	n(x + y) 1/3			
2				
4		5 9 1		\
3,5	- h M ² - n	41	TI.ov	
×	$\times = -b + \sqrt{b - 4}$			_
+	(1)			
70				
°2, 0	AAA	1 - 000		
30				
W				

Question 5 continued	Leave
+ cosxsiny	
sin(x + 1/1/3"	
$\times \frac{-b+\sqrt{b-4ac}}{2a}$	
Mains Gio	
	Q5
(Total 13 marks)	

6.

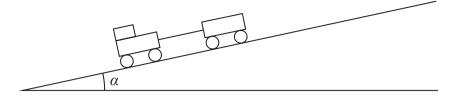


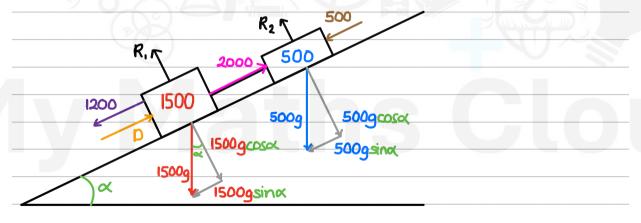
Figure 3

A railway engine of mass 1500 kg is attached to a railway truck of mass 500 kg by a straight rigid coupling. The engine pushes the truck up a straight track, which is inclined to the horizontal at an angle α , where $\sin \alpha = \frac{7}{25}$. The coupling is parallel to the track and parallel to the direction of motion, as shown in Figure 3.

The engine produces a constant driving force of magnitude *D* newtons. The engine and the truck experience constant resistances to motion, from non-gravitational forces, of magnitude 1200 N and 500 N respectively.

The thrust in the coupling is 2000 N.

The coupling is modelled as a light rod.


(a) Find the acceleration of the engine and the truck.

(4)

(b) Find the value of *D*.

4)

a) Draw a diagram labelling all relevant forces.

We can only consider forces on the truck only as D is unknown. The coupling is also rigid so the acceleration of the truck and engine are the same which can be calculated using the equation of motion.

$$\frac{...}{2000-500-500}$$
 = 500 a

$$\frac{1500 - 500(9.8)(7/25)}{500} = 0.256 \,\text{ms}^{-2}$$

Question 6 continued

b) To find \square we consider forces on the engine only to simplify the equation.

$$0 = 1500(0.256) + 1200 + 1500g(\frac{7}{25}) + 2000 = 7700 \text{ N}$$

		ι cosxs	l.		
		,05N + C03A3	iny E		
	intx + VI is		3		
	51.1				
70		J- 51-	1//		
×	, /×=-1	b+\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		π	·4
226	7				
+			(+,		<u> </u>
× ₀			Total		\$ (
(3)					
			5		

Question 6 continued	Lea blar
cosxsiny	
- in(x + y) // int	
$\begin{array}{c c} \times & \times & -b + \sqrt{b^2 + 4ac} \\ \hline & 2a & \end{array}$	
W Mathe Clo	
	Q6
(Total 8 marks)	

7.

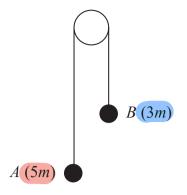
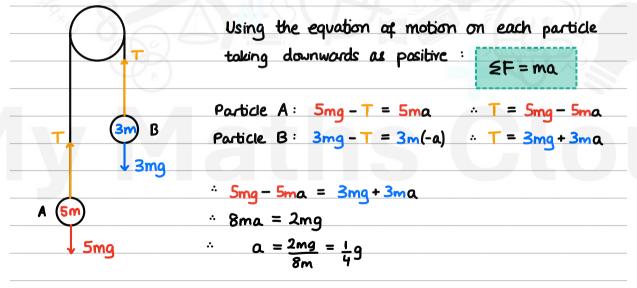


Figure 4


One end of a light inextensible string is attached to a particle A of mass 5m. The other end of the string is attached to a particle B of mass 3m. The string passes over a small, smooth, light fixed pulley. Particle A is held at rest with the string taut and the hanging parts of the string vertical, as shown in Figure 4.

Particle A is released.

(a) Find, in terms of m and g, the magnitude of the force exerted on the pulley by the string while A is falling and before B hits the pulley.

(8)

- (b) State how, in your solution to part (a), you have used the fact that the pulley is smooth.
- a) Draw a diagram labelling all relevant forces

$$\dot{T} = 5mg - 5m(\frac{9}{4}) = \frac{15mg}{4}$$
 or $T = 3mg + 3m(\frac{9}{4}) = \frac{15mg}{4}$

The total force acting on the pulley during descent is 2T.

$$\frac{1}{4} = \frac{15mg}{4} = \frac{30mg}{4} = \frac{15mg}{2} = \frac{1}{2}$$

o) Tension o	n both sides of the	pulley are equal.	
		* cosxsinv	
	:K1 CO 5 N		
	5in(x + 1/) 1/2		
~// 9	0	2-2 2	
472		-5-01	
×	$\times = -b + \sqrt{b}$	7-4ac	π _%
296	7.4		
+ 20			
10 × 0	1.4.5	# A A A A A A A A A A A A A A A A A A A	
9 0			
	Maii		

uestion 7 continued	
+ cosxsiny	
sin(x + 1) / sint	
$\begin{array}{c} + \\ \times \\ \times \\ \end{array}$	
v Maths Clo	

		SY + cosxsiny			
	in the second		3		
	sin(x + y) //	2000			
	,//	4.42	9		
7		4	4,7		
Jo '		+V2-4ac		π _%	
8		20			
+ 2		(+			
11			±)° (+)		
- X & Y				90	
	Mai				
				440	
	_				
					Q'

blank

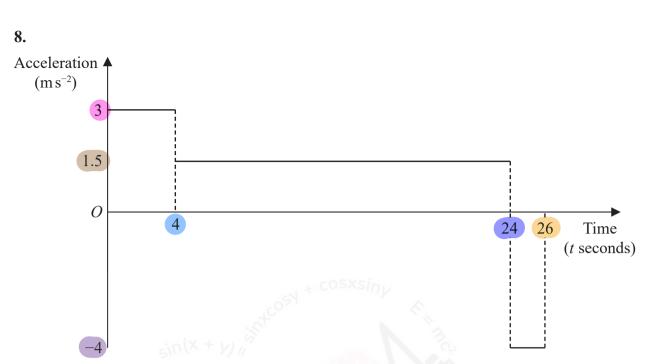


Figure 5

The acceleration-time graph shown in Figure 5 represents part of a journey made by a car along a straight horizontal road. The car accelerated from rest at time t = 0

(a) Find the distance travelled by the car during the first 4s of its journey.

(2)

(b) Find the total distance travelled by the car during the first 26s of its journey.

(6)

a) The acceleration of the car is constant so SUVAT can be used.

```
S: S (Distance travelled in first 4 seconds)
```

u: 0 (The car accelerated from rest)

γ:

a: 3 (Acceleration from t=0 to t=4)

t: 4 (Time interval of SUVAT)

SUVAT formula without γ : $S = ut + \frac{1}{2}at^2$

$$\frac{1}{2} \cdot S = (0)(4) + \frac{1}{2}(3)(4)^2 = 24m$$

b) We can just repeat the above steps to find the remaining distances using SUVAT.

```
Question 8 continued
For t=4 to t=24 :
             (Distance travelled from t=4 to t=24)
             (Yelocity at t=4 using Y=U+at)
  u: 3×4
  ٧:
             (Acceleration from t=4 to t=24)
  t: 24-4 (Time interval for SUVAT)
  SUVAT formula without \gamma: S = ut + \frac{1}{2}at^2
 d = (3 \times 4)(24 - 4) + \frac{1}{2}(1.5)(24 - 4)^{2} = 240 + 300 = 540 \text{ m}
For t=24 to t=26
                    (Distance travelled from t=24 to t=26)
  u: 12+1-5(24-4) (Yelocity at t=4 using Y=U+at)
  ٧:
                    (Acceleration from t=24 to t=26)
  a: -4
  t: 26-24
                    (Time interval for SUVAT)
                                    S = ut + \frac{1}{2}at^2
   SUVAT formula without \gamma:
 \dot{p} = [12 + 1.5(24 - 4)](26 - 24) + \frac{1}{2}(-4)(26 - 24)^2 = 84 - 8 = 76 \text{ m}
 " Total distance travelled: d_ = 24+540+76 = 640m
```

uestion 8 continued				
	,cosy *	cosxsiny		
Sil	(x + y) 11 EE	ARL	3	
- 2 - 2//				
a ² to	$x = \frac{-b + \sqrt{\frac{2}{b^2 - 1}}}{2a}$	400		π_{γ}
3 ² + 23%	Ø 1811 E	(+ _x		
** 8 00 00 00 00 00 00 00 00 00 00 00 00 0				
VY	lat	hs		

Question 8 continued	Leave blank
∠ cosxsin.	
TCO SN	
sin(x + y) is 3	
$\begin{array}{c} 76 \\ \times -b + \sqrt{b^2 - 4ac} \\ 2a \end{array}$	
W Maths Clo	

